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ABSTRACT: The performance of dielectric elastomers is affected by temperature and deformation, but very few models account for

the effect of both factors. Recent experiments showed that the dielectric constant of the most widely used dielectric elastomer varies

significantly with respect to temperature and deformation. We propose a model to study the influence of changes in dielectric con-

stant on the electromechanical stability of dielectric elastomer. The model predicts the stability criteria with physical interpretation of

its dependence on dielectric constant and electrostrictive coefficient. The numerical simulation indicates that the stress due to electro-

striction relies on the temperature and deformation dependent dielectric constant and contributes to enhance the stability of the

dielectric elastomer. VC 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 000: 000–000, 2012
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INTRODUCTION

Dielectric elastomer (DE) is emerging electroactive material and

DE can produce large electromechanical deformation under a

voltage. It can deform with an area strain well exceed 300%,

which has been designed for diverse applications, including soft

robots, optical devices, space applications, and energy genera-

tors.1-6 It is generally sandwiched between two compliant elec-

trodes and used as a stretchable capacitor.

However, under conventional operating circumstances, the prac-

tical application of dielectric elastomer is limited by the electro-

mechanical instabilities,7-9 including pull-in instability and

snap-through instability. As voltage increases, the positive feed-

back between a higher electric field and a thinner elastomer

may result in pull-in instability.10,11 This pull-in instability usu-

ally occurs before the electrical breakdown with a maximum

thickness deformation of 30–40%.12,13 After the pull-in instabil-

ity, if the dielectric elastomer can be stiffened at moderate de-

formation, it may snap to a thinner state close to its compres-

sion limit, exhibiting and resulting in snap-through instability.14

This phenomenon was interpreted as two electromechanical co-

existent states owing to a nonconvex free-energy function of the

dielectric elastomer, which leads to a discontinuous phase tran-

sition.11 Recently, the process of this electromechanical phase

transition under various conditions has been discussed in detail,

which can significantly improve the stability in dielectric elasto-

mer without electrical breakdown.15

In fact, both experiment and theory have proved that large sta-

ble deformation induced by voltage is possible, as long as the

pull-in and snap-through instabilities are suppressed, e.g., by

prestretch,12,16 by nonlinear polarization,17 by using swollen

dielectric organogel18 or by using interpenetrating network.19

Zhao and Suo20 proposed a method to study the electrome-

chanical instability by involving the deformation dependent

electrostriction. They showed that the deformation-dependent

dielectric constant could suppress the electromechanical instabil-

ity. Consequently, the deformation-dependent electrostriction is

then investigated further in the stability of DE.13,21

In the past investigation, DE is assumed to operate in an iso-

thermal environment. Recently, Liu et al.22 studied the thermo-

electro-mechanical instability of dielectric elastomers by employ-

ing a Mooney–Rivlin model, but assumed that dielectric con-

stant is not affect by deformation. In fact, experimental results

on the most widely used dielectric elastomer (VHB 4910, 3M)

displayed a strong relation between the dielectric constant and

area prestretch at different temperatures.23,24 Therefore, the elec-

trostrictive stress functioning as electrostriction will be gener-

ated as a result of the variation of dielectric constant9 and con-

sequently affect the actuation and the stability of DE. To the
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authors’ best knowledge, however, there is very few modeling

work on the impact of temperature on electromechanical

instabilities, including electrostrictive effect in a dielectric elas-

tomer actuator undergoing large deformation has not been

presented.

In this article, we aim to study the temperature and deforma-

tion-dependent dielectric constant and its influence on the elec-

tromechanical stabilities of DE. With the proposed free energy

model, we are able to characterize the actuation and investigate

the conditions of instability of DE undergoing large thermo-

elastic deformation. As the dielectric constant changes with

respect to deformation and temperature, the model shows that

the Maxwell stress and the electrostrictive stress contribute to

the voltage-induced deformation simultaneously.

EXPERIMENTAL

Effect of Temperature and Deformation on Dielectric

Constant

The molecular chain in the dielectric elastomer comprises num-

bers of polar monomer units in its backbone and side chains. It

is obvious that most chains crosslink with each other via cova-

lent bonds, forming a three-dimensional network which enables

the dielectric elastomer to undergo large deformation. At a

stress free or a relative small deformation state, the dipoles are

free to align with an external electric field and the dipole polar-

ization may saturate when all the dipoles are perfectly aligned.

Consequently, the covalent bonds have inappreciable influence

on polarization of the monomers. This behavior of ideal polar-

ization is similar to polymer melt at small stretch. However, as

the chain is further stretched to large deformation, the dipoles

composing the backbone are most likely oriented in the direc-

tion of the force, and partly lose their freedom of alignment at

other directions, while the rotations of dipoles in the side chains

are less likely affected by the force. If an electric field is applied,

let us say, normal to the in-plane stretch deformation, the

dipole orientation polarization of the elastomer will be lower

than that in the undeformed state, hence the dielectric constant

decreases.13 The chemical structure of the most widely used

VHB 4910 is shown in Figure 1.25 However, the chemical name

of VHB 4910 is obscure due the commercial secret, where ‘‘n,

m’’ in Figure 1 is the number of rigid links composing a single

chain and is not known. In recent experiment, Jean-Mistral

et al.24 stretched membranes of a VHB 4910 elastomer by an

equal prestretch in the planar directions at different tempera-

tures and fitted the dielectric constant as a function of the pre-

stretch in the statement of electrostriction12,20

e kð Þ ¼ ak2p þ c: (1)

where kp is the prestretch of the elastomer, a and c are parame-

ters at different temperatures. In writing eq. (1), we have

assumed that the dielectric elastomer is isotropic initially. When

the electric field is applied in the direction of thickness, by sym-

metry, the coefficient of electrostriction is the same in the plane

perpendicular to the direction of the electric field.20

When the temperature varies, the thermal expansion coefficient

does not affect the thickness of the structures as its value of

VHB 4910 is considerably low. In addition, VHB 4910 presents

almost a permanent dipole moment due to its asymmetrical

structure.24 It is shown that the effect of temperature on dielec-

tric constant is relatively significant and can be explained by a

simple Debye model for gas24

e ¼ e1 þ Nl2=3e0kT : (2)

where e1 is the limiting value of the dielectric constant at high

frequencies, N is the dipole density, m is the dipole moment,

and k is the Boltzmann constant.

The molecules have more thermal energy at higher temperature

and therefore, the amplitude of random thermal motion is

greater. This means that the range of deviation from a perfect

alignment with the electric field is greater. Therefore, the mole-

cules are less closely aligned with each other, and the dielectric

constant reduces with increasing temperature. According to

their experimental data24 at different temperatures and pre-

stretches in Figure 2, we fit a 3D function which is

e ¼ e k;Tð Þ ¼ ak2 þ b=T þ c; (3)

With a ¼ �0.053, b ¼ 638, and c ¼ 3.024. Here a is defined as

the electrostrictive coefficient and is in agreement with the value

Figure 1. Chemical structures of the VHB 4910 acrylic elastomer.

Figure 2. Experimentally measured dielectric constant24 and 3D curves

fitting result as a function of area prestretch and temperature. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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(�0.053) in a previous report.20 To simplify the mathematical

expressions, we introduce BT ¼ b=T þ c.

EQUATIONS OF STATE FOR DE

Free Energy Model of Dielectric Elastomer Undergoing Large

Deformation

To study the effect of temperature and deformation dependent

dielectric constant on electromechanical instability of DE, we

focus on a widely used configuration where a membrane of DE

sandwiched between two electrodes1,2 (see Figure 3). In the un-

deformed state, the membrane is of dimensions L1, L2, and L3.

In the current state, the membrane is subjected to tension forces

P1, P2 and an electric voltage U with an environment of a fixed

temperature T. Electrons flow through the external circuit, each

surface of the membrane gains electric charge, Q, and dimen-

sions of the DE become k1L1, k2L2, and k3L3, where k1, k2, and
k3 are the stretches. Define the nominal electric field by

E ¼ U=L3, and the nominal electric displacement by

D ¼ Q= L1L2ð Þ, the nominal stresses by s1 ¼ P1= L2L3ð Þ and

s2 ¼ P2= L1L3ð Þ. The elastomer is taken to be incompressible and

the three stretches are no longer independent, so that

k3¼ k�1
1 k�1

2 . We regard k1 and k2, along with D and T, as four

independent variables that describe the state of the elastomer.

The dielectric elastomer, the mechanical forces, the thermal

force and the voltage constitute a thermodynamic system. The

free energy model of the system can be expressed as22,26:

W ¼ T

T0

Ws k1; k2ð Þ þ q0c0 T � T0 � T ln
T

T0

� �� �

þ D2

2e0e T ; k1; k2ð Þ k
�2
1 k�2

2 : (4)

The first term in the right-hand side of eq. (4) is the thermo-

elastic energy, where Ws k1; k2ð Þ is the isothermal-free energy

density due to stretch at the reference temperature T0.
27,28 The

second term is the purely thermal contribution, where the pa-

rameters q0 and c0 denote the mass density and the specific

heat capacity.28 The third term is the dielectric energy, where

e0 ¼ 8:85� 10�12 F/m is the dielectric constant of the vacuum,

and e T ; k1; k2ð Þ ¼ e is the temperature and deformation de-

pendence of dielectric constant of the polymer.

Thermodynamics dictates that a stable equilibrium state should

minimize the free energy of the system.29 The eq. (4) is mini-

mized when the current state of the system is a state of stable

equilibrium. Consequently, the nominal stress, nominal electric

field and specific entropy can be expressed via the partial deriv-

ative of free energy function W as

s1 ¼
@W

@k1
¼ T

T0

@Ws k1; k2ð Þ
@k1

� k�3
1 k�2

2 D2

e0e
� k�2

1 k�2
2 D2

2e0e2
@e
@k1

; (5)

s2 ¼
@W

@k2
¼ T

T0

@Ws k1; k2ð Þ
@k2

� k�2
1 k�3

2 D2

e0e
� k�2

1 k�2
2 D2

2e0e2
@e
@k2

; (6)

E ¼ @W

@D
¼ D

e0e
k�2
1 k�2

2 ; (7)

Once the elastic energy Ws k1; k2ð Þ is specified for the incom-

pressible dielectric elastomer, the three eqs., (5)–(7), constitute

the equations of state.

To be specific, we consider the elastomer subject to equal biaxial

stresses s1 ¼ s2 ¼ s. We assume that the dielectric is isotropic,

so that the two in-plane stretches are equal, which we denote as

k1 ¼ k2 ¼ k. Because of incompressibility, the stretch in the

direction of thickness is given by k3 ¼ k�2.

DE exhibits significant stiffening on approaching the limiting

stretch.9 To take into account the effect of extension limit, we

use the Gent model27,30

Ws kð Þ ¼ � lJm 1þ h T � T0ð Þ=T0ð Þð Þ
2

ln 1� 2k2 þ k�4 � 3

Jm 1þ h T � T0ð Þ=T0ð Þð Þ

� �
; ð8Þ

where m is the isothermal infinitesimal shear modulus at refer-

ence temperature T0, Jm is a dimensionless parameter related to

the limiting stretch and y is a parameter that takes into account

the modifications of this maximum average chain length to

reflect dependence on the temperature.27

In the following calculations, we take y ¼ 0 as the special case

proposed by Bilgili et al.28 With eqs. (4) and (8), the equilib-

rium conditions for DE undergoing equal biaxial (k1 ¼ k2 ¼ k)
deformation become

s ¼ @W

@k
¼ 2l

T

T0

k� k�5

1� 2k2þk�4�3
Jm

� 2D2

e0e
k�5 � D2

2e0e2
� @e
@k

k�4; (9)

Effiffiffiffiffiffiffiffiffi
l=e0

p ¼ Dffiffiffiffiffiffiffi
le0

p � k
�4

e
: (10)

Equations (9) and (10) constitute a complete set of equations of

state for the specific material model of dielectric elastomers,

which we use in the following analysis to study the effect of

temperature and deformation dependence of dielectric constant

on the actuation and the electromechanical instability in dielec-

tric elastomer.

RESULTS AND DISCUSSION

Electromechanical Instability

By substituting eq. (3) into eqs. (9) and (10), we obtain that

Figure 3. Schematic of a dielectric elastomer in (a) undeformed state; (b)

deformed state, subject to forces and an electric voltage with an environ-

ment of a fixed temperature T. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Effiffiffiffiffiffiffiffiffi
l=e0

p ¼ Dffiffiffiffiffiffiffi
le0

p � k�4

ak2 þ BT

; (11)

s

l
¼ 2

T

T0

k� k�5

1� 2k2þk�4�3
Jm

� 3ak2 þ 2BT

ak2 þ BT

� �2 � D
2

e0l
k�5: (12)

To be specific, we consider a dielectric elastomer is subject to

no mechanical force s ¼ 0. In this condition, combining eqs.

(11) and (12), we write the equilibrium state in the dimension-

less form:

Effiffiffiffiffiffiffiffiffi
l=e0

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

T0

2 k�2 � k�8
� �
1� 2k2þk�4�3

Jm

� 1

3ak2 þ 2BT

vuut ; (13)

Dffiffiffiffiffiffiffi
le0

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

T0

2 k6 � 1
� �

1� 2k2þk�4�3
Jm

�
ak2 þ BT

� �2
3ak2 þ 2BT

vuut : (14)

In plotting these equations and in the analysis of what follows,

we normalize the nominal electric field as �E ¼ E=
ffiffiffiffiffiffiffiffiffi
l=e0

p
, the

nominal electric displacement as D ¼ D=
ffiffiffiffiffiffiffi
le0

p
and take T0 ¼

300 K, Jm ¼ 100,17,26 a ¼ �0.053 and BT ¼ 3:204þ 638=T as

representative values for VHB 4910 dielectric elastomer.

The condition of eq. (13) is plotted in Figure 4. We mark the

critical point for pull-in instability by cross and snap-through

instability by an arrow in Figure 4. As the temperature increases

from 233 to 373 K, the critical value of the nominal electrical

field increases. The maximum values for �E are, respectively,

about 0.26 at 233 K, 0.30 at 273 K, 0.31 at 293 K, 0.33 at 313 K

and 0.37 at 373 K. As the dielectric constant of the polymer is

temperature and deformation dependent, @e T ; kð Þ=@k < 0 for

all temperatures, usually known as electrostrictive effect, there-

fore, the third term in eq. (9) can partially reduce the squeezing

deformation from the Maxwell stress and offsets the positive

feedback between the true electric field and the thickness, con-

tributing to improve the pull-in instability.

After the pull-in instability, the electric field rises again with the

stretch, because the chains approach the limiting stretches and

then stiffen steeply. As marked in Figure 4, the snap-through

instability is linked to inhomogeneous deformation and may

lead to electromechanical phase transition.15 This phase transi-

tion corresponds to two states of deformation, thin state with

small stretch and thick state with relatively large stretch. Under

special conditions, the two states of the membrane may coexist.

This can be achieved by wrinkling the regions in the thin state.7

To further illustrate the physical idea of the effect of tempera-

ture and deformation on electromechanical instabilities in

dielectric elastomer, we explore the consequence of this model

by plotting the nominal electric field-stretch curves for various

values of the electrostrictive coefficients under different temper-

atures in Figure 5. At 300 K in Figure 5(a), for a ¼ 0, the elas-

tomer possesses deformation-independent dielectric constants,

which corresponds to the ideal dielectric studied previously11

and the critical stretch is about k � 1.26. For a typical VHB

4910, a ¼ �0.053, the nominal electric field reaches a peak

value of 0.297 at a bigger stretch k � 1.27. Especially at a ¼
�0.7 in Figure 5(a), the local peak disappears and large stretch

may generate, resulting in a monotonic electric field-stretch

curve and enabling the elastomer to survive the pull-in and

snap-through instabilities.

Figure 4. Nominal electric field-stretch curves at various temperatures.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. The effect of the electrostrictive coefficient on the electromechanical instability at different temperatures (a) 300 K and (b) 400 K. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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At a high temperature of 400 K in Figure 5(b), the local peak

vanishes for a ¼ �0.6. As temperature increases from 300 to

400 K, the maxima for the electric fields are, respectively,
�E300 ¼ 0:293 and �E400 ¼ 0:385 for a ¼ 0, �E300 ¼ 0:297 and
�E400 ¼ 0:391 for a ¼ �0.053. Compared with Figure 5(a, b)

shows that the critical value of the nominal electrical field at

the onset of instability increases with the increasing of tempera-

ture. That is to say, as the temperature increases, the electrome-

chanical stability of the elastomer can be improved and large

stretch can be obtained. This result is consistent with experi-

mental observations on the increase of critical stretch and elec-

tromechanical responses due to the increasing temperature.31 At

lower temperatures the VHB 4910 becomes very stiff and the

strain response can be significantly reduced.32

The critical stretch at the onset of the pull-in instability can be

obtained from eq. (13).

Figure 6 plots the critical stretch (kc) corresponding to pull-in

instability with respect to electrostrictive coefficient at two tem-

peratures. As a decreases, the critical value of the stretch

increases. When a � �0.636 for T ¼ 300 K and when a �
�0.551 for T ¼ 400 K, the pull-in instability is eliminated. The

increase of temperature increases the critical value of the elec-

trostrictive coefficient to suppress the pull-in instability.

The curve of temperature dependent critical electrostrictive

coefficient to suppress the electromechanical instability is plot-

ted in Figure 7. The critical electrostrictive coefficient decreases

with the decrease of temperature. As shown in Figure 7, two

regions, stable and unstable state in electromechanical deforma-

tion, are separated by the curve. Above the curve, the voltage-

stretch character of the elastomer is nonmonotonous and the

local pull-in instability peak will take place, so that the system

is electromechanical unstable; below the curve, the negative

electrostrictive coefficient is sufficient for the elastomer to sur-

vive the electromechanical instability and generate large stretch.

That is to say, a variation of dielectric constant with tempera-

ture and deformation can make the dielectric elastomer to work

in a new stable state of electromechanical actuation and gener-

ate larger deformation.

The dielectric constant of DE is a function of temperature and

deformation. When temperature and deformation are changed,

the variation of dielectric constant can result in electrostrictive

effect. The electrostrictive effect induced by the stretch with the

changing of temperature would modify the electric field–stretch

curve and would eventually suppress the pull-in instability.

Unlike the Maxwell stress, the existence of the temperature and

deformation dependent electrostrictive effect generates electro-

strictive stress, which thickens the elastomer as a result of the

elongation of dipoles alignment, a fact that restrains the positive

feedback between the electric field and the thickness. So that an

enhancement of stability will be obtained and a new stable state

of large stretch will be generated.

CONCLUSIONS

In summary, we proposed a model to characterize the influence

of temperature and deformation-dependent dielectric constant on

electromechanical instability and electrostrictive effect in dielectric

elastomers. The model shows that electrostriction caused by the

variation of dielectric constant could enhance the actuation sta-

bility of dielectric elastomer. A moderate negative electrostrictive

coefficient will restrain the pull-in and snap-through instabilities.

Simultaneously, the increase of temperature improves the critical

value of electrostrictive coefficient for eliminating the pull-in and

snap-through instabilities. This study offers a method to improve

the electromechanical instability of DE and may be used to guide

the design of new high-performance DE material.
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Figure 6. The effect of the electrostrictive coefficient on the critical stretch

at two temperatures 300 and 400 K. [Color figure can be viewed in the
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Figure 7. The critical electrostrictive coefficient to suppress the electrome-

chanical instability with different temperatures. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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